Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Data ; 11(1): 467, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719891

RESUMO

Angiogenesis is extensively involved in embryonic development and requires complex regulation networks, whose defects can cause a variety of vascular abnormalities. Cis-regulatory elements control gene expression at all developmental stages, but they have not been studied or profiled in angiogenesis yet. In this study, we exploited public DNase-seq and RNA-seq datasets from a VEGFA-stimulated in vitro angiogenic model, and carried out an integrated analysis of the transcriptome and chromatin accessibility across the entire process. Totally, we generated a bank of 47,125 angiogenic cis-regulatory elements with promoter (marker by H3K4me3) and/or enhancer (marker by H3K27ac) activities. Motif enrichment analysis revealed that these angiogenic cis-regulatory elements interacted preferentially with ETS family TFs. With this tool, we performed an association study using our WES data of TAPVC and identified rs199530718 as a cis-regulatory SNP associated with disease risk. Altogether, this study generated a genome-wide bank of angiogenic cis-regulatory elements and illustrated its utility in identifying novel cis-regulatory SNPs for TAPVC, expanding new horizons of angiogenesis as well as vascular abnormality genetics.


Assuntos
Polimorfismo de Nucleotídeo Único , Humanos , Sequências Reguladoras de Ácido Nucleico , Fator A de Crescimento do Endotélio Vascular/genética , Estudo de Associação Genômica Ampla , Neovascularização Patológica/genética
2.
Front Cell Dev Biol ; 10: 1062403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568976

RESUMO

VSD combined with other cardiac or extracardiac malformations (defined as "complex VSD" by us) is one of the major causes of perinatal morbidity and mortality. Functional non-coding SNPs (cis-regulatory SNPs) have not been systematically studied in CHDs, including complex VSD. Here we report an exome-wide association analysis using WES data of 60 PA/VSD cases, 20 TOF cases and 100 controls in Chinese children. We identify 93 low-frequency non-coding SNPs associated with complex VSD risk. A functional genomics pipeline integrating ATAC-seq, ChIP-seq and promoter CHi-C recognizes the rs2279658 variant as a candidate cis-regulatory SNP. Specifically, rs2279658 resides in a cardiac-specific enhancer bound by FOXH1 and PITX2, and would abrogate binding of these two transcription factors to the identified enhancer during cardiac morphogenesis. COQ2 and FAM175A are predicted to be target genes for "rs2279658-FOXH1 or PITX2" pairs in the heart. These findings highlight the importance of cis-regulatory SNPs in the pathogenesis of complex VSD and broaden our understanding of this disease.

3.
Phys Med ; 100: 72-80, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759942

RESUMO

PURPOSE: To evaluate AAPM TG-218 recommended tolerances for IMRT QA for conventional and SBRT delivery. METHODS: QA analysis was repeated for 150 IMRT/VMAT patients with varying gamma criteria. True composite delivery was utilized, corrected for detector and output variation. Universal tolerance (TLuniv) and action limits (ALuniv) were compared with statistical process control (SPC) TLSPC and ALSPC values. Analysis was repeated as a function of plan complexity for 250 non-stereotactic body radiotherapy (SBRT) VMAT patients at 3%/2mm and a threshold of 10% and for 75 SBRT VMAT patients at 2%/2 mm and a threshold of 50% with results plotted as a function of PTV volume. Regions of failure were dose-scaled on the planning CT data sets based on delivery results. RESULTS: The IMRT/VMAT TLSPC and ALSPC for gamma criteria of 3%/3 mm were 96.5% and 95.6% and for 3%/2 mm were 91.2% and 89.2%, respectively. Correlation with plan complexity for conventional fractionation VMAT was "low" for all sites with pelvis having the highest r value at -0.35. The equivalent SBRT PTV diameter ranged from 2.0 cm to 5.6 cm. Negative low correlation was found for 38 of 75 VMAT cases below ALuniv. CONCLUSIONS: The ALuniv and ALSPC are similar for 3%/2 mm. However, our 5% failure rate for ALuniv, may result in treatment start delays approximately 2 times/month, given 40 new cases/month. VMAT QA failure at stricter criteria did not correlate strongly with plan complexity. Site-specific action limits vary less than 3% from the average. SBRT QA results do not strongly correlate with target size over the range studied.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Raios gama , Humanos , Aceleradores de Partículas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
4.
Mol Genet Genomics ; 297(3): 671-687, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35260939

RESUMO

Atrioventricular septal defects (AVSD) are a complicated subtype of congenital heart defects for which the genetic basis is poorly understood. Many studies have demonstrated that the transcription factor SOX7 plays a pivotal role in cardiovascular development. However, whether SOX7 single nucleotide variants are involved in AVSD pathogenesis is unclear. To explore the potential pathogenic role of SOX7 variants, we recruited a total of 100 sporadic non-syndromic AVSD Chinese Han patients and screened SOX7 variants in the patient cohort by targeted sequencing. Functional assays were performed to evaluate pathogenicity of nonsynonymous variants of SOX7. We identified three rare SOX7 variants, c.40C > G, c.542G > A, and c.743C > T, in the patient cohort, all of which were found to be highly conserved in mammals. Compared to the wild type, these SOX7 variants had increased mRNA expression and decreased protein expression. In developing hearts, SOX7 and GATA4 were highly expressed in the region of atrioventricular cushions. Moreover, SOX7 overexpression promoted the expression of GATA4 in human umbilical vein endothelial cells. A chromatin immunoprecipitation assay revealed that SOX7 could directly bind to the GATA4 promoter and luciferase assays demonstrated that SOX7 activated the GATA4 promoter. The SOX7 variants had impaired transcriptional activity relative to wild-type SOX7. Furthermore, the SOX7 variants altered the ability of GATA4 to regulate its target genes. In conclusion, our findings showed that deleterious SOX7 variants potentially contribute to human AVSD by impairing its interaction with GATA4. This study provides novel insights into the etiology of AVSD and contributes new strategies to the prenatal diagnosis of AVSD.


Assuntos
Defeitos dos Septos Cardíacos , Animais , Fator de Transcrição GATA4/genética , Predisposição Genética para Doença , Defeitos dos Septos Cardíacos/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mamíferos , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição/genética
5.
Curr Med Chem ; 29(23): 3991-3996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35170403

RESUMO

BACKGROUND: The current coronavirus disease 2019 (COVID-19) pandemic, since first reported in Wuhan, has inspired worldwide efforts to develop effective COVID-19 vaccination strategies. mRNA vaccines encoding COVID-19 antigens have emerged prominantlyin this global race due to their high effectiveness and simple manufacturing process. Notably, two COVID-19 mRNA vaccines, mRNA-1273 and BNT162b2, have survived in clinical trials and been authorized for emergency use across variouscountries. SUMMARY: Recent advances on mRNA vaccine development for COVID-19 are discussed in this perspective, including sequence design, chemical modification, manufacturing process, and in vivo delivery. Phase I to IV clinical trials of mRNA-1273 and BNT162b2 are then summarized, respectively. CONCLUSION: Using mRNA vaccines is a promising strategy to achieve mass vaccination in the COVID-19 pandemic. We hope that future studies of mRNA vaccine technology will overcome existing limitations and help people cope with COVID-19.


Assuntos
COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Humanos , Pandemias , RNA Mensageiro/genética , Vacinas Sintéticas/genética , Vacinas de mRNA
6.
J Transl Med ; 20(1): 15, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986855

RESUMO

BACKGROUND: Invasive malignant pleomorphic adenoma (IMPA) is a highly malignant neoplasm of the oral salivary glands with a poor prognosis and a considerable risk of recurrence. Many disease-causing genes of IMPA have been identified in recent decades (e.g., P53, PCNA and HMGA2), but many of these genes remain to be explored. Weighted gene coexpression network analysis (WGCNA) is a newly emerged algorithm that can cluster genes and form modules based on similar gene expression patterns. This study constructed a gene coexpression network of IMPA via WGCNA and then carried out multifaceted analysis to identify novel disease-causing genes. METHODS: RNA sequencing (RNA-seq) was performed for 10 pairs of IMPA and normal tissues to acquire the gene expression profiles. Differentially expressed genes (DEGs) were screened out with the cutoff criteria of |log2 Fold change (FC)|> 1 and adjusted p value < 0.05. Then, WGCNA was applied to systematically identify the hidden diagnostic hub genes of IMPA. RESULTS: In this research, a total of 1970 DEGs were screened out in IMPA tissues, including 1056 upregulated DEGs and 914 downregulated DEGs. Functional enrichment analysis was performed for identified DEGs and revealed an enrichment of tumor-associated GO terms and KEGG pathways. We used WGCNA to identify gene module most relevant with the histological grade of IMPA. The gene FZD2 was then recognized as the hub gene of the selected module with the highest module membership (MM) value and intramodule connectivity in protein-protein interaction (PPI) network. According to immunohistochemistry (IHC) staining, the expression level of FZD2 was higher in low-grade IMPA than in high-grade IMPA. CONCLUSION: FZD2 shows an expression dynamic that is negatively correlated with the clinical malignancy of IMPA and it plays a central role in the transcription network of IMPA. Thus, FZD2 serves as a promising histological indicator for the precise prediction of IMPA histological stages.


Assuntos
Adenoma Pleomorfo , Redes Reguladoras de Genes , Adenoma Pleomorfo/genética , Receptores Frizzled/genética , Perfilação da Expressão Gênica , Humanos , Mapas de Interação de Proteínas/genética , Transcriptoma
7.
Front Mol Biosci ; 8: 714203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722629

RESUMO

Objectives: Gliomas remain one of serious public health problems worldwide which demand further and deeper investigation. The aim of this study was to explore the association between synapse defective protein 1 homolog 1 (SYDE1) and gliomas via public database analysis and in vitro validation to determine the potential diagnostic and prognostic values. Methods and Results: Compared with healthy brain tissues, there was a significant increase in SYDE1 expression in glioma tissues. Additionally, SYDE1 exhibited higher expression levels in glioma patients with unfavorable clinicopathological factors. In vitro knockdown of SYDE1 in glioma cell lines A172 inhibited their migrative and invasive ability but not the proliferative ability. GO and KEGG pathway analysis of the top 100 genes coexpressed with SYDE1 showed enrichments of tumor-associated terms. Further bioinformatic analysis revealed that the SNHG16/hsa-miR-520e/SYDE1 axis might be involved in glioma development. Conclusions: SYDE1 is expressed at higher levels in gliomas than in healthy brains, and can promote metastasis and invasion but not proliferation of gliomas. Furthermore, SYDE1 has values in the diagnosis and prognosis prediction of gliomas.

8.
Cell Death Dis ; 12(4): 393, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846290

RESUMO

Cardiac septum malformations account for the largest proportion in congenital heart defects. The transcription factor Sox7 has critical functions in the vascular development and angiogenesis. It is unclear whether Sox7 also contributes to cardiac septation development. We identified a de novo 8p23.1 deletion with Sox7 haploinsufficiency in an atrioventricular septal defect (AVSD) patient using whole exome sequencing in 100 AVSD patients. Then, multiple Sox7 conditional loss-of-function mice models were generated to explore the role of Sox7 in atrioventricular cushion development. Sox7 deficiency mice embryos exhibited partial AVSD and impaired endothelial to mesenchymal transition (EndMT). Transcriptome analysis revealed BMP signaling pathway was significantly downregulated in Sox7 deficiency atrioventricular cushions. Mechanistically, Sox7 deficiency reduced the expressions of Bmp2 in atrioventricular canal myocardium and Wnt4 in endocardium, and Sox7 binds to Wnt4 and Bmp2 directly. Furthermore, WNT4 or BMP2 protein could partially rescue the impaired EndMT process caused by Sox7 deficiency, and inhibition of BMP2 by Noggin could attenuate the effect of WNT4 protein. In summary, our findings identify Sox7 as a novel AVSD pathogenic candidate gene, and it can regulate the EndMT involved in atrioventricular cushion morphogenesis through Wnt4-Bmp2 signaling. This study contributes new strategies to the diagnosis and treatment of congenital heart defects.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Defeitos dos Septos Cardíacos/metabolismo , Fatores de Transcrição SOXF/metabolismo , Proteína Wnt4/metabolismo , Animais , Estudos de Casos e Controles , Pré-Escolar , Endocárdio/embriologia , Endocárdio/crescimento & desenvolvimento , Endocárdio/metabolismo , Feminino , Defeitos dos Septos Cardíacos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Transdução de Sinais
9.
Adv Radiat Oncol ; 6(1): 100594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33490729

RESUMO

PURPOSE: The purpose of this work is to present a practical, structured process allowing for consistent, safe radiation therapy delivery in the re-treatment environment. METHODS AND MATERIALS: A process for reirradiation is described with documentation in the form of a special physics consultation. Data acquisition associated with previous treatment is described from highest to lowest quality. Methods are presented for conversion to equieffective dose, as well as our departmental assumptions for tissue repair. The generation of organ-at-risk available physical dose for use in treatment planning is discussed. Results using our methods are compared with published values after conversion to biologically effective dose. Utilization of pulsed-low-dose-rate delivery is described, and data for reirradiation using these methods over the previous 5 years are presented. RESULTS: Between 2015 and 2019, the number of patients in our department requiring equieffective dose calculation has doubled. We have developed guidelines for estimation of sublethal damage repair as a function of time between treatment courses ranging from 0% for <6 months to 50% for >1 year. These guidelines were developed based on available spinal cord data because we found that 84% of organs at risk involved nerve-like tissues. The average percent repair used increased from 32% to 37% over this time period. When comparing the results obtained using our methods with published values, 99% of patients had a cumulative biologically effective dose below the limits established for acceptable myelopathy rates. Pulsed-low-dose-rate use over this period tripled with an average prescription dose of 49 Gy. CONCLUSIONS: The methods described result in safe, effective treatment in the reirradiation setting. Further correlation with patient outcomes and side effects is warranted.

10.
Curr Med Chem ; 28(9): 1796-1814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32196441

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. The concept of precision medicine in CVD therapy today requires the incorporation of individual genetic and environmental variability to achieve personalized disease prevention and tailored treatment. Autophagy, an evolutionarily conserved intracellular degradation process, has been demonstrated to be essential in the pathogenesis of various CVDs. Nonetheless, there have been no effective treatments for autophagy- involved CVDs. Long noncoding RNAs (lncRNAs) are noncoding RNA sequences that play versatile roles in autophagy regulation, but much needs to be explored about the relationship between lncRNAs and autophagy-involved CVDs. SUMMARY: Increasing evidence has shown that lncRNAs contribute considerably to modulate autophagy in the context of CVDs. In this review, we first summarize the current knowledge of the role lncRNAs play in cardiovascular autophagy and autophagy-involved CVDs. Then, recent developments of antisense oligonucleotides (ASOs) designed to target lncRNAs to specifically modulate autophagy in diseased hearts and vessels are discussed, focusing primarily on structure-activity relationships of distinct chemical modifications and relevant clinical trials. PERSPECTIVE: ASOs are promising in cardiovascular drug innovation. We hope that future studies of lncRNA-based therapies would overcome existing technical limitations and help people who suffer from autophagy-involved CVDs.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , RNA Longo não Codificante , Autofagia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Coração , Humanos , RNA Longo não Codificante/genética
12.
Med Phys ; 43(2): 727-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26843236

RESUMO

PURPOSE: The CyberKnife M6 (CK-M6) Series introduced a multileaf collimator (MLC) for extending its capability from stereotactic radiosurgery/stereotactic radiotherapy (SBRT) to conventionally fractionated radiotherapy. This work is to investigate the dosimetric quality of plans that are generated using MLC-shaped beams on the CK-M6, as well as their delivery time, via comparisons with the intensity modulated radiotherapy plans that were clinically used on a Varian Linac for treating hepatic lesions. METHODS: Nine patient cases were selected and divided into three groups with three patients in each group: (1) the group-one patients were treated conventionally (25 fractions); (2) the group-two patients were treated with SBRT-like hypofractionation (5 fractions); and (3) the group-three patients were treated similar to group-one patients, but with two planning target volumes (PTVs) and two different prescription dose levels correspondingly. The clinically used plans were generated on the eclipse treatment planning system (TPS) and delivered on a Varian Linac (E-V plans). The multiplan (MP) TPS was used to replan these clinical cases with the MLC as the beam device for the CK-M6 (C-M plans). After plans were normalized to the same PTV dose coverage, comparisons between the C-M and E-V plans were performed based on D(99%) (percentage of prescription dose received by 99% of the PTV), D(0.1cm(3)) (the percentage of prescription dose to 0.1 cm(3) of the PTV), and doses received by critical structures. Then, the delivery times for the C-M plans will be obtained, which are the MP TPS generated estimations assuming having an imaging interval of 60 s. RESULTS: The difference in D(99%) between C-M and E-V plans is +0.6% on average (+ or - indicating a higher or lower dose from C-M plans than from E-V plans) with a range from -4.1% to +3.8%, and the difference in D(0.1cm(3)) was -1.0% on average with a range from -5.1% to +2.9%. The PTV conformity index (CI) for the C-M plans ranges from 1.07 to 1.29 with a mean of 1.19, slightly inferior to the E-V plans, in which the CI ranges from 1.00 to 1.15 with a mean of 1.07. Accounting for all nine patients in three groups, 45% of the critical structures received a lower mean dose for the C-M plans as compared with the E-V plans, and similarly, 48% received a lower maximum dose. Furthermore, the average difference of the mean critical structure dose between the C-M and E-V plans over all critical structures for all patients showed only +2.10% relative to the prescription dose and the similar comparison finds the average difference of the maximum critical structure dose of only +1.24%. The estimated delivery times for the C-M plans on the CK-M6 range from 18 to 24 minutes while they are from 7 to 13.7 min for the E-V plans on the Varian Linac. CONCLUSIONS: For treating hepatic lesions, for the C-M plans that are comparable to E-V plans in quality, the times needed to deliver these C-M plans on the CK-M6 are longer than the delivery time for the E-V plans on the Varian Linac, but may be clinically acceptable.


Assuntos
Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Radiocirurgia/instrumentação , Robótica , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Phys Med ; 31(1): 54-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25284321

RESUMO

The purpose of this study is to evaluate the treatment plan adequacy and delivery efficiency among volumetric-modulated arc therapy (VMAT) with one or two arcs and the conventional static-field dynamic multileaf collimator (dMLC) intensity-modulated radiation therapy (IMRT) in patients undergoing oropharyngeal carcinoma. Fifteen patient cases were included in this investigation. Each of the cases was planned using step-and-shoot IMRT, VMAT with a single arc (Arc1) and VMAT with double arcs (Arc2). A two-dose level prescription for planning target volumes (PTVs) was delivered with 70 Gy/56 Gy in 30 fractions. Comparisons were performed of the dose-volume histograms (DVH) for PTVs, the DVH for organs at risk (OARs), the monitor units per fraction (MU/fx), and delivery time. IMRT and Arc2 achieved similar target coverage, but superior to Arc1. Apart from the oral cavity, Arc1 showed no advantage in sparing of OARs compared with IMRT, while Arc2 obtained equivalent or better sparing of OARs among the three techniques. VMAT reduced MU/fx and shortened delivery time remarkably compared with IMRT. Our results demonstrated that for oropharyngeal cases, Arc2 can achieve superior target coverage and normal tissue sparing, as well as a significant reduction in treatment time.


Assuntos
Neoplasias Orofaríngeas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Carcinoma de Células Escamosas/radioterapia , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Fatores de Tempo
14.
Asian Pac J Cancer Prev ; 15(17): 7015-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25227784

RESUMO

Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.


Assuntos
Transformação Celular Neoplásica/genética , MicroRNAs/genética , Mitocôndrias/genética , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Transformação Celular Neoplásica/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo
15.
Phys Med Biol ; 59(4): 819-36, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24487461

RESUMO

Electron beam therapy has been an important radiation therapy modality for many decades. Studies have been conducted recently for more efficient and advanced delivery of electron beam radiation therapy. X-ray contamination is a common problem that exists with all of the advanced electron beam therapy techniques such as Bolus Electron conformal therapy, segmented electron conformal therapy, and modulated electron arc therapy. X-ray contamination could add some limitations to the advancement and clinical utility of those electron modalities. It was previously shown in the literature that the scattering foil is one of the major accelerator parts contributing to the generation of bremsstrahlung photons. Thus, in this work we investigate the dosimetric characteristics of scattering foil free (SFF) electron beams and the feasibility of using those beams for breast cancer boosts. The SFF electron beams were modeled and simulated using the Monte Carlo method. CT scans of six previously treated breast patients were used for the treatment plan generation utilizing our in-house Monte Carlo-based treatment planning system. Electron boost plans with conventional beams and the SFF beams were generated, respectively, for all patients. A significant reduction of the photon component was observed with the removal of the primary scattering foil for beam energies higher than 12 MeV. Flatness was greatly affected but the difference in flatness between conventional and SFF beams was much reduced for small cone sizes, which were often used clinically for breast boosts. It was found that the SFF electron beams could deliver high-quality dose distributions as conventional electron beams for boost treatments of the breast with an added advantage of a further reduced dose to the lung and the heart.


Assuntos
Elétrons/uso terapêutico , Espalhamento de Radiação , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
16.
J Appl Clin Med Phys ; 15(1): 4506, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24423848

RESUMO

The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1 mm based on percentage depth doses (PDDs) and off-axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in-house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC-shaped field sizes with appropriate jaw settings. In the next stage, patient-specific verification with a full MERT plan should be performed.


Assuntos
Elétrons/uso terapêutico , Registro da Relação Maxilomandibular/instrumentação , Método de Monte Carlo , Radiometria/métodos , Radioterapia de Alta Energia/instrumentação , Radioterapia de Intensidade Modulada , Simulação por Computador , Desenho de Equipamento , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
17.
Med Phys ; 40(11): 111709, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24320417

RESUMO

PURPOSE: To investigate whether the three-dimensional cone-beam CT (CBCT) is clinically equivalent to the four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) reconstructed images for internal target volume (ITV) localization in image-guided lung stereotactic radiotherapy. METHODS: A ball-shaped polystyrene phantom with built-in cube, sphere, and cone of known volumes was attached to a motor-driven platform, which simulates a sinusoidal movement with changeable motion amplitude and frequency. Target motion was simulated in the patient in a superior-inferior (S-I) direction with three motion periods and 2 cm peak-to-peak amplitudes. The Varian onboard Exact-Arms kV CBCT system and the GE LightSpeed four-slice CT integrated with the respiratory-position-management 4DCT scanner were used to scan the moving phantom. MIP images were generated from the 4DCT images. The clinical equivalence of the two sets of images was evaluated by comparing the extreme locations of the moving objects along the motion direction, the centroid position of the ITV, and the ITV volumes that were contoured automatically by Velocity or calculated with an imaging gradient method. The authors compared the ITV volumes determined by the above methods with those theoretically predicted by taking into account the physical object dimensions and the motion amplitudes. The extreme locations were determined by the gradient method along the S-I axis through the center of the object. The centroid positions were determined by autocenter functions. The effect of motion period on the volume sizes was also studied. RESULTS: It was found that the extreme locations of the objects determined from the two image modalities agreed with each other satisfactorily. They were not affected by the motion period. The average difference between the two modalities in the extreme locations was 0.68% for the cube, 1.35% for the sphere, and 0.5% for the cone, respectively. The maximum difference in the centroid position of the cylinder, sphere, and cone was less than 1.4 mm between the two modalities for all motion periods studied. For the ITV volume evaluation, the authors found that both MIP-based and CBCT-based ITVs increased with increases of motion period. Furthermore, the MIP-based ITV volumes were generally larger than those determined from the CBCT images, with the difference in autocontoured volumes being 2.57%, 1.66%, and 1.82% for the sphere, cylinder, and cone, respectively, while these differences increased to 9.57%, 3.52%, 8.71% for the above objects when the gradient method was used. The authors found that the autocontour method was accurate enough to predict the actual ITV values with the absolute differences less than 2.4% comparing to the theoretically predicted values. CONCLUSIONS: The extreme location and the centroid position of the objects agree with each other between the two image modalities when the breathing motion is sinusoidal. Although the ITV volumes delineated from both image modalities changed with the motion period, the differences in ITV between the two modalities were minimal when an optimized window level was used. The authors' results suggest that CBCT and MIP images are equivalent in determining an ITV's position in the conditions studied. The CBCT is adequate in providing imaging-guidance for lung cancer treatment.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Radiocirurgia/métodos , Algoritmos , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Imagens de Fantasmas , Poliestirenos/química , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Reprodutibilidade dos Testes , Respiração , Software
18.
Phys Med Biol ; 58(16): 5653-72, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23892910

RESUMO

A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose-volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the target was showing a mean percentage difference of 1.57%± 1.65, while the difference in the dose received by 99% of the volume was showing a mean percentage difference of 1.08%± 0.78. The mean percentage volume of Lung receiving a percentage dose equal to or greater than 20% of the prescribed dose was found to be 8.55%± 7.3 and 8.67%± 7 for the eMLC and applicator/cutout combination delivery methods respectively. Results have shown that target coverage and critical structure sparing can be effectively achieved by electron beams collimated with the eMLC. Positioning the eMLC leaves in such a way to avoids shielding any part of the projected treatment volume is most conservative and would be the recommended method to define the actual leaf position for the eMLC defined field. More optimal leaf positions can be achieved in shaping the same treatment field through the interplay of different leaf positioning strategies. We concluded that the eMLC represents an effective time saving and pollution-free device that can completely replace patient specific cutouts.


Assuntos
Elétrons/uso terapêutico , Medicina de Precisão , Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Estudos de Viabilidade , Humanos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
19.
J Appl Clin Med Phys ; 13(2): 3708, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22402387

RESUMO

The purpose of this study was to assess target repositional accuracy with respect to the bony structures using daily CBCT, and to validate the planning target volume (PTV) margin used in the lung SBRT. All patients underwent 4D CT scanning in preparation for lung SBRT. The internal target volume (ITV) was outlined from the reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. A 6 mm margin was added to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was taken after a patient was set up in the treatment position. The CBCT images were fused with the simulation CT based on the bony anatomy, in order to derive setup errors and separate them from the tumor repositional errors. The treating physician then checked and modified the alignment based on target relocalization within the PTV. The shifts determined in such a method were recorded and the subtractions of these shifts with respect to the corresponding setup errors were defined as the target relocalization accuracy. Our study of 36 consecutive patients, treating 38 targets for a total of 153 fractions shows that, after setup error correction, the target repositional accuracy followed a normal distribution with the mean values close to 0 in all directions, and standard deviations of 0.25 cm in A-P, 0.24 cm in Lat, and 0.28 cm in S-I directions, respectively. The probability of having the shifts ? 0.6 cm is less than 0.8% in A-P, 0.6% in Lat, and 1.7 % in S-I directions. For the patient population studied, the target centroid position relative to the bony structures changed minimally from day to day. This demonstrated that the PTV margin that is designed on the MIP image-based ITV was adequate for lung SBRT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Humanos , Neoplasias Pulmonares/patologia
20.
J Appl Clin Med Phys ; 11(2): 2913, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20592689

RESUMO

Modulated electron radiation therapy (MERT) has been proven as an effective way to deliver conformal dose distributions to shallow tumors while sparing distal critical structures and surrounding normal tissues. It had been shown that a dedicated electron multileaf collimator (eMLC) is necessary to reach the full potential of MERT. In this study, a manually-driven eMLC for MERT was investigated. Percentage depth dose (PDD) curves and profiles at different depths in a water tank were measured using ionization chamber and were also simulated using the Monte Carlo method. Comparisons have been performed between PDD curves and profiles collimated using the eMLC and conventional electron applicators with similar size of opening. Monte Carlo simulations were performed for all electron energies available (6, 9, 12, 15, 18 and 20 MeV) on a Varian 21EX accelerator. Monte Carlo simulation results were compared with measurements which showed good agreement (< 2%/1mm). The simulated dose distributions resulting from multiple static electron fields collimated by the eMLC agreed well with measurements. Further studies were carried out to investigate the properties of abutting electron beams using the eMLC, as it is an essential issue that needs to be addressed for optimizing the MERT outcome. A series of empirical formulas for abutting beams of different energies have been developed for obtaining the optimum gap sizes, which can highly improve the target dose uniformity.


Assuntos
Método de Monte Carlo , Neoplasias/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos , Simulação por Computador , Elétrons , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...